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Artificial Neural Networks (ANN) can be very effective for pattern recognition, function
approximation, scientific classification, control, and the analysis of time series data; however
they can require very large training times for large networks. Once the network is trained
for a particular problem, however, it can produce results in a very short time. Traditional
ANNs using back-propagation algorithm do not scale well as each neuron in one level is fully
connected to each neuron in the previous level. In the present work only the neurons at the
edges of the domains were involved in communication, in order to reduce the communication
costs and maintain scalability. Ghost neurons were created at these processor boundaries for
information communication. An object-oriented, massively-parallel ANN software package
SPANN (Scalable Parallel Artificial Neural Network) has been developed and is described
here. MPI was used to parallelize the C++ code. The back-propagation algorithm was used
to train the network. In preliminary tests, the software was used to identify character sets
consisting of 48 characters and with increasing resolutions. The code correctly identified all
the characters when adequate training was used in the network. The training of a problem
size with 2 billion neuron weights on an IBM BlueGene/L computer using 1000 dual PowerPC
440 processors required less than 30 minutes. Various comparisons in training time, forward
propagation time, and error reduction were also made.

I. Introduction

ARTIFICIAL Neural Networks (ANN)1−4 have been used for many complex tasks such as stock prediction and
nonlinear function approximations. ANNs loosely mimic the human brain and consist of large networks of

artificial neurons. These neurons have two or more input ports and one output port. Generally each input port is
assigned a weight, and also a change of weight (delta-weight) to speed up the convergence. The output of a neuron
is the weighted sum of the inputs. A transfer function is generally applied to the output depending on the desired
behavior of the ANN. For example the sigmoid function is generally used when the output varies continuously but
not linearly with input. The “learning” in ANNs occurs through iteratively modifying the input weights of each
neuron, and often uses the back-propagation algorithm.5−8 Training massive neural networks can be extremely time
consuming however, since they do not scale well.

It is important to investigate scalable ANNs since supercomputers will soon have roughly the power of a human
brain. The human brain has approximately 100 billion neurons9 and each one has roughly 1,000 synapses. If we
assume each synapse represents one byte, this amounts to roughly 1014 bytes of data (100 terabytes). The human
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brain is also capable of roughly 1014 to 1016 instructions per second.9,10 This is far from being possible to simulate
using traditional serial computers, but is not far from current massively parallel computers. There are many different
types of ANNs (spiking,11 multi-layer,12 recurrent,12 ART,13 etc.), some are more biologically plausible than others.
ANNs are important in attempts to model the brain, but they are also important for practical engineering applications.
In modeling the human brain we should try to use biologically plausible networks13−20 (e.g., spiking networks), but
for engineering applications we simply want efficient software and algorithms.

Figure 1 shows some common devices and some living creatures in terms of memory and speed.10 Currently,
one of the largest parallel computers is the NASA SGI Columbia machine,21 with 10,240 Itanium 2 processors
(1.5 GHz) which has sustained 4 ∗ 1013 floating point operations per second and has 2 ∗ 1013 bytes of memory.
This places it in a position as shown in the figure. IBM has developed two BlueGene computers that are even
larger and faster than Columbia.22 Current massively parallel computers do offer the hope of delivering significant
“intelligence.” In addition, Moore’s law states that computer performance doubles roughly every 18 months, so
computers could be 16 times larger and faster in 6 years, which means they might exceed the capacity of the human
brain fairly soon. Even though computers are approaching the size and speed of mammal brains, there is the additional
problem of machine learning. It would not be trivial to teach these machines to know what a human knows (but
once this is accomplished it would be easy to transfer this knowledge to other computers!). Learning in humans is
not necessarily fast either, since it typically takes about 18 (or more) years to train a human to function in modern
society. In the next few paragraphs we discuss the implementation of parallel ANNs on computing machines and
later provide some background on our parallel implementation of a back-propagation method on massively parallel
machines.

The machines on which parallel Artificial Neural Networks (ANNs) have been implemented can be broadly
divided into two categories: special purpose hardwired parallel processors and general purpose computers. Each
of these implementations has their relative advantages and disadvantages. For example, hardwired parallel neural
networks are low cost, high speed, and small size but they are not flexible once they are hard wired on silicon chips.

Fig. 1 Present status of technology (from Moravec10).
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On the other hand, implementations on general purpose computers are relatively slow, but have the advantage of
flexibility though often there is a compromise between speed and flexibility.

There have been many implementations of parallel training schemes for ANNs on massively parallel computers,
with the Backpropagation (BP) scheme being the most extensively implemented.23−26 It is also one of the most popular
and computationally intensive training algorithms. Based on the way the parallel Back Propagation (BP) scheme is
parallelized, it can be divided broadly into three categories: Network Partitioning, Pattern Partitioning, and Hybrid
schemes. In network partitioning schemes, the neurons and weights of a Network are distributed among different
processors. The neurons can be partitioned in two different ways: complete partitioning and vertical sectioning.
In complete partitioning,27 and 28 each processor gets one neuron whereas in vertical sectioning each processor gets
some neurons from each layer.27,29−34,35 and 36 Further, the weights can be partitioned in four different ways: complete
partitioning, inset grouping, outset grouping, and checkerboarding. As suggested by the name, complete partitioning
(also known as synapse level parallelism) assigns a single weight to each processor. Though this offers the finest
level of parallelism, the communication costs are quite large. Inset grouping schemes group together the weights on
the incoming edges of a specific neuron to form a set. This inset set of a neuron is assigned to the processor which
possesses the neuron. Thus the need for communicating the values required to compute the activation during forward
propagation is eliminated.27,30,31 and 33 The outset grouping approach groups together the weights on the outgoing
edges of a specific neuron in a set. This set is allocated to the processor possessing the neuron. Thus this grouping
scheme eliminates the need for communication of error vectors which are needed during backward propagation.37

Both inset and outset grouping schemes can be used together to improve the overall efficiency, but these schemes
duplicate each weight on two processors, increasing the work during weight updates.29 and 32 The checkerboard
method partitions the weights by grouping the rows and columns of the weight matrix. It has been used in mesh
architectures,37 systolic arrays,38 and hypercubes.39

In pattern partitioning, the whole network is replicated on each processor. Here the pattern set is divided equally
among the processors. Each processor carries out its own training for the given set of local patterns and also stores
the weight changes for updating weights. Finally the processors communicate to update the weights according to
the communicated weight changes. This scheme is generally preferred when there is a large pattern set and on
machines having efficient broadcast operation.35,40−42 The computations in different layers of the network can also
be pipelined,27,33 that is, while one pattern is being processed for some layer, a different pattern can be processed for
preceding layer.

Hybrid schemes can combine pattern partitioning and network partitioning. For example, pipelining with vertical
sectioning,27,33 vertical sectioning with simple pattern partitioning,31 and pattern partitioning with checkerboarding.39

There have been several implementations of parallel ANNs in the past on specific parallel architectures. For
example, on ring systolic arrays,43 on SIMD arrays,44−47 on MasPar MP-1,48 on Torus,49 and on Hypercube
architectures.39,50−52 These algorithms were systematically derived to map on to a specific parallel architecture,
giving them the highest efficiency on that architecture. Most of these implementations date back to more than a
decade ago, with few implementations on current supercomputers. Also, most of these previous efforts have con-
centrated more on implementing the traditional fully-connected ANN on a parallel architecture. In a fully connected
ANN, all the neurons in a layer feed into all the neurons of the next layer. The problem with fully connected ANNs
when implemented on parallel machines is their high communication costs.

In this paper we present a software implementation of the ANN on massively parallel machines, which uses the
traditional BP algorithm for training. In the approach described here the neural network is constructed in a columnar
manner, which loosely mimics the connections and layers in the human brain. Our software is scalable for both
the forward propagation and the training phase. Moreover, it has several characteristics of the basic neural network
computation model i.e. it has simple processing units (neurons), small local memory is required per neuron, and it
is highly parallel. Our ANN is not fully connected except for the first layer, resulting in very low communication
costs. In our network, all the inputs feed into all the neurons in the first layer. For the time being a very simple test
case has been chosen to demonstrate the effectiveness of the parallel implementation. In the future we plan to train
the software for more complex cases such as image recognition.

The work described here is not an attempt to accurately model the brain, it is simply an attempt to implement
scalable ANNs on massively parallel computers. This may be useful for both a first step towards software models
of networks in the human brain and also for developing useful engineering tools (e.g., for pattern recognition).
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Fig. 2 Absolute error against number of training iterations.

The connections and flow of information in the brain are, of course, much more complex than a simple feed-forward
network.

Large ANN’s require a large amount of memory and computational time to train. Figure 2 shows the convergence
of a serial ANN having 1000 neurons (using one hidden layer) for a period of 2,000 iterations. It uses the back-
propagation algorithm5,6,53 to adjust the weights. The time required to train this network (per iteration) was about
0.05 seconds using a 1.5 GHz Pentium 4 processor. The memory required for this network was roughly 1 MB (each
weight was stored as a 4-byte floating point number). For comparison purposes, the time taken per iteration for a
network having 30,000 neurons was about 50 seconds. Also, the amount of memory required by such a network was
about 0.9 GB. Thus, serial ANNs have severe limitations in terms of memory and training time required. And it is
well known that they do not scale well.12

II. Back-propagation Algorithm for Neural Networks
This section presents briefly the back-propagation algorithm for multi-layer neural networks. Figure 3 shows how

a neuron calculates its activity using the inputs. A neuron in the output layer computes its activity using Eqs. (1) and
(2). Here, f (x) is the scaling function which is generally the sigmoid function. A unipolar sigmoid function varies
from 0 to 1, and is calculated by Eq. (3). A bipolar sigmoid function varies from −1 to 1, and is given by Eq. (4). The
gain used here is 1.0. After calculating the activity of the neurons, the network computes its error, given by Eq. (5).

xj =
∑

yiWij (1)

yj = f (xj ) (2)

f (x) = 1

(1 + e−x)
(3)

f (x) = 2

1 + e−xj
− 1 (4)

E = 0.5
∑

(yi − di)
2 (5)

Fig. 3 A processing unit or neuron.
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Back-propagation starts at the output layer with Eqs. (6) and (7). The learning rate, η, applies a scaling factor
to the adjustment to the old weight. If the factor is set to a large value, then the neural network may learn quickly,
provided that the variation in the training set is not large. Usually, it is better to set the factor to a small value initially
and later increase it if the learning seems slow. We typically use a value of η = 0.1.

The momentum factor α basically allows a change to the weights to persist for a number of adjustment cycles.
This can improve the learning in some situations, by helping to smooth out unusual conditions in the training set.
We typically use a value of α = 0.5.

wij = w′
ij + (1 − α)ηejxi + α(w′

ij − w′′
ij ) (6)

ej = yj (1 − yj )(dj − yj ) (7)

Once the error terms are computed and weights are adjusted for the output layer, the values are recorded and the
previous layer is adjusted. The same weight adjustment process, determined by Eq. (6), is followed, but the error
term is computed by Eq. (8).

ej = yj (1 − yj )
∑

ekw
′
jk (8)

In contrast to Eq. (7), in this equation, the difference between the desired output and the actual output is replaced by
the sum of the error terms for each neuron, k, in the layer immediately succeeding the layer being processed times
the respective pre-adjustment weights. There is no exact criteria for how many weights are required for a neural
network, but there are some rules of thumb. For example,12 for a network with Ni input units, a lower bound for
the number of hidden units would be Log2(Ni), other sources53 have suggested using the average of the number of
inputs and number of outputs.

A single feed-forward and back-propagation operation requires O(N ) operations,12 where N is the number
of adjustable weights. There is no exact formula for the amount of training required for a neural network, it
depends on the problem and the network architecture. Barron54 shows that the error in a feed-forward ANN can
be O(1/N ). There is also a rule of thumb12 that states that the size of the training set, T , should satisfy the following
relation:

T = O(N/ε) (9)

Where ε denotes the fraction of classification errors permitted. This means that for a case where 10% error rate is
allowed, the number of training examples should be 10 times the number of weights. In the tests performed so far
here, the networks appear to require far fewer iterations than the above might indicate. It is important to point out
though that the feed-forward operation is O(N ), so if we can use large parallel computers to train neural networks
then we can copy the weights to a serial computer and put the network to use (assuming the serial computer uses the
same network structure).

III. Software
We have developed ANN software, called SPANN (Scalable Parallel Artificial Neural Network), which runs

on massively parallel computers and uses the back-propagation training algorithm. An object oriented (C++)55,56

approach is used to model the neural network. The software implements several C++ objects, such as Neuron,
Layer, and Network. The software can have any number of layers and each layer can have any number of neurons.
Each neuron stores information such as weights, delta-weight for momentum, error and its output. Figure 4 shows
a UML type diagram of the data and methods associated with each of the classes (objects). As one would expect,
the Neuron object has output, error, and an array of weights. The Layer objects have arrays of Neurons, and the
Network objects have arrays of layers. The Message Passing Interface (MPI) library57,58 is used for paralleliza-
tion. Neurons in each layer are distributed roughly equally to all the processors, however all the inputs are fed
to each processor. Each layer in a processor has two ghost neurons at the boundaries. Error, outputs, or weights
of the boundary neurons are communicated and are stored in the ghost neurons in the neighboring processors,
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Fig. 4 A UML type diagram of the important classes, data, and methods used in the code.

whenever required. Section IV explains in detail the implementation of ghost neurons. The main MPI routines
used are:

• MPI_Bcast to broadcast the input variables to other processors
• MPI_Allreduce to get the errors at all processors when required
• MPI_Gather, MPI_Gatherv to get the final combined output onto the master processor
• MPI_SendRecv to send and receive data in ghost nodes
• MPI_Barrier to synchronize processors
An important issue in the parallel implementation of ANNs is the communication load due to the nature of the

feed-forward and back-propagation algorithms traditionally used. Conventional feed-forward algorithms have every
neuron connected to all the neurons in the previous layer. This approach results in huge communication costs which
would affect the scalability, and it is not biologically plausible either.

The human neocortex has six layers and the layers are not fully connected. In our approach, only values at
the boundaries of the processor domains are communicated thus reducing the communication cost significantly.
Figure 5 shows the communication involved in a layer for a 3-processor (P0, P1, and P2) simulation, with 12
inputs, 2 hidden layers with 9 hidden units each and 6 outputs. It also shows an example of how the ghost neu-
rons are used at the edges of the processor domains. The figure shows all the inputs connected to all the neurons
in the first hidden layer of processor P0, similar connections feed into all the other processors. Each of these
connections stores the value of the weight and delta-weight for momentum. The neurons are distributed among
the processors such that each processor has the same load. The network is trained using the back-propagation
algorithm.

In order to better understand the parallel ANN, it might be useful to discuss how the number of weights varies
with number of neurons. First, for a traditional ANN with 1 hidden layer, the total number of weights in the network
can be computed from:

Total Weightsserial = (Nin + Nout)Nhidden

where Nin, Nout, and Nhidden are the number of neurons in the input, output, and hidden layer, respectively. The CPU
time for one forward/backward propagation (for the serial case) varies linearly with the total number of weights. For
the parallel ANN used here, the total number of weights varies according to:

Total Weightsparallel = NinNhidden + ((L − 3)Nhidden + Nout)
Nhidden

Nproc
+ 4(L − 1)Nproc

Where L is the number of layers (including input and output) and Nproc is the number of processors being used.
All of the inputs (Nin) are fed into every processor, but each processor has Nhidden/Nproc hidden neurons/layer and
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Fig. 5 Neuron connections and communication in a three processor system.

Nout/Nproc output neurons. The number of weights per processor is given by:

Weights/Processorparallel = NinNhidden

Nproc
+ ((L − 3)Nhidden + Nout)

Nhidden

N2
proc

+ 4(L − 1)

For example, for the serial ANN, if Nin = 200, Nout = 48, and Nhidden = 125 then the total number of weights is
31,000. As an example for the parallel case, if Nin = 200, Nout = 48, Nhidden = 120, L = 6, and Nproc = 8 then the
total number of weights would be 30,280 and each processor would have 3785 weights. This also shows how the two
different networks could be configured to have roughly the same number of total weights. The CPU time on the parallel
computer will vary linearly with the weights/processor, plus there will be inter-processor communication costs.

In order to test the software, a character set, shown in Fig. 6, consisting of 48 characters was used.59 Each character
is represented by (at a minimum) an array of 3 × 5 pixels. Each pixel has a value of 1 or −1 according to whether it

Fig. 6 Character set used for testing.
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is on or off. Thus, input for each character is represented by a vector of (at a minimum) 15 real numbers. The output
for each character is a vector of length 48, with all but one value being zeros. The size of the input could be increased
by increasing the resolution of the characters. Thus, for a resolution of R, each pixel in the original character set
was replaced by R × R identical pixels. For the serial case, the output remained the same for any resolution. As the
parallel code required at least two neurons per processor in a single layer, the output was padded with zeros whenever
required. Though the character set is a simple classification problem, it allows for increasing the problem size by
increasing the resolution.

IV. Implementation of Ghost Neurons
This section discusses implementation of ghost neurons at the boundaries of the domains in detail. As shown

in Fig. 5, ghost neurons are used to communicate information from the “real” neuron of a layer at a processor’s
boundary to the ghost neuron at the neighboring processor’s boundary so that this information can be processed by
the “real neuron” of the next layer. There are three types of information that needs to be passed on: neuronal output,
error, and weights and “delta weight” for implementing momentum calculations. The timings of these boundary
communications are important. They need to be passed on only when needed to avoid unnecessary computations.
In this implementation particular attention was paid so that no unnecessary computation is done at any step. This
resulted in very good scalability even when the problem size was increased linearly with processors up to 1000
processors. We believe that the code will be scalable for even larger problem sizes or more number of processors.
The next paragraph discusses the issue of what information needs to be passes at which stage.

For the forward propagation step only the neuron outputs and weights in the ghost neuron need to be updated when
a layer finishes its computations. One pass in the learning or training stage involves four steps in the flowing order:
First a forward propagation pass as described above updates the outputs, weights and delta weights. Second the errors
in the output layer are computed using the target values. Next the errors are propagated back starting from the last
layer to the first. This step involves communication of the errors to/from the ghost neurons. Finally, the weights are
adjusted according to the output, errors, weights, and delta weights. The ghost neurons have already communicated
the required values in the final step during the first three steps. One additional point needs to be mentioned. So the
ghost neurons can be thought of as agents which pass information from say neurons present in a particular processor
to the neighboring processors. So having more layers in the network helps information to be propagated to all the
processors. In the present case having five to six layers helps this cause.

V. Results
Several serial runs were made for comparison with the parallel code. The serial runs were performed on an IBM

P640 RS6000 Server.60 Table 1 shows the training time required for the serial case as the resolution of the characters is
increased. Most of the characters were recognized correctly. Figure 7 shows the percentage of the characters correctly
recognized compared to the training iterations for different values of total weights in the network. It is observed that
there seems to be an optimal value of weights for the network, which gives the most correct character recognitions for
lesser number of iterations. This is due to the fact that the network is unable to “learn” due to underfitting when there
are less than the required numbers of weights. Also, when the number of weights is much larger than the required,
the network tends to remember rather than “learn”, due to over fitting. It should be noted that what seems to be true
for this problem might not hold for other neural nets or other applications, and generalization can only be made after
proper verification. The parallel code has been tested using roughly the same number of weights as in the serial case.

Table 1 Training time required for the serial ANN

Resolution Total weights Iterations Training time (sec)

1 1890 37,824 5.4
2 3240 64,800 13.1
4 8640 172,800 76
5 12,690 253,776 157
8 30,240 604,800 842
9 37,890 757,776 1313
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Fig. 7 Percentage of correct characters recognized against number of training iterations for different weights in a
serial ANN.

Fig. 8 Percentage of correct characters recognized codes against number of training iterations for different weights
in parallel ANN. Number of processors was 4.

These results were obtained from a 160-processor Beowulf computing cluster.61 The learning rate and momentum
factors were set to 0.5 for both the serial and the parallel cases. Figure 8 shows the percentage of the characters
correctly recognized against the training iterations for different values of total weights in the network.

More results, comparing the convergence of the serial and parallel codes, are shown in Fig. 9. For this case, both
networks had roughly 12,000 weights and the number of inputs was 135. The serial case used a 135-70-48 network,
with a learning rate of 0.1 and momentum factor of 0.5. The parallel case used 8 processors and a 135-76-76-76-48

Fig. 9 Convergence of serial and parallel.
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Fig. 10 Training time taken as the problem size was increased linearly with the number of processors.

Fig. 11 Time taken for one forward propagation as the problem size increases linearly with the number of processors.

network, with a learning rate of 0.7 and momentum factor of 0.7. This figure shows that even though the network
structures of the serial and parallel networks are quite different, it is possible to achieve similar convergence results.

Figures 10, 11, and 12 show the performance results of SPANN on massively parallel computers. In order to
maintain parallel efficiency, the number of neurons per layer was scaled linearly with the number of processors. The
runs for Figs. 10 and 11 were performed on the NASA SGI Columbia computer.21

Fig. 12 Training time taken as the problem size was increased linearly with the number of processors.
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Table 2 SPANN results for scaling number of inputs of neural network with number of processors.

Neurons Per Percent Memory CPU
Processors Inputs Neurons Hidden Layer Weights Correct Used (GB) Time(sec.)

16 37,500 1584 256 9,613,376 100 % 0.08 246
64 150,000 6272 1024 153,652,480 100 % 1.20 2489

500 600,000 25,000 4000 2,400,106,384 89 % 19.0 6238

The runs for Fig. 12 were performed on an IBM Bluegene.22 Figures 10 and 12 show that the training time is
essentially constant when the number of neurons is scaled linearly with the number of processors. All of these runs
used the same number of training intervals. In practice, the larger networks may require more training for the same
level of accuracy. Figure 11 shows that the time taken for a single forward propagation step also remains essentially
constant as the number of neurons are scaled linearly with processors. For 64,000 neurons per layer (using 6 layers) on
500 processors, the total memory required was about 0.2GB/processor (each weight was stored as a 4-byte floating
point number). The memory required by a single neuron for this case was about 1KB. The largest case (on 500
processors) used more than 24 million neuron weights.

In order to show the scalability of the code in another manner, Table 2 shows results for cases where the number of
inputs was scaled with the number of processors. All of these cases used six hidden layers, and were run on NASA’s
Columbia computer (1.5 GHz Itanium2 processors) using the Intel C++ compiler (vers. 7.1) with the options: -ftz -
ipo -IPF_fltacc -IPF_fma –O3. Note that Columbia has 1.9GB memory/processor, so these cases were using a small
fraction of the total memory. A single feed-forward operation on the largest case required only 0.25 seconds.

VI. Conclusions
Traditional ANN’s do not scale well. For massively parallel ANNs it is not practical to have the neurons at each

level connected to all the neurons on the previous level, since this would require an enormous amount of inter-
processor communication. In the approach described here the neural network is constructed in a columnar manner,
which loosely mimics the connections and layers in the human brain. In the future we could have layers of neurons
in a two-dimensional grid with communication taking place between arrays of neurons. We could also have layers of
neurons in a three-dimensional block with communication taking place between the surface neurons of the blocks.
The software developed here is scalable and permits the use of billions of weights or synapses. The approach used
here also allows an ANN to be trained on a massively parallel computer and then used on smaller serial computers.
In the future we plan to train the software for more complex cases such as image recognition.
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